Khóa Học Online Machine Learning with Python: Học Máy Với Python | Học Rẻ Hơn Cùng EduMalls | Mã: 9024
03 tháng 11
Published
11 tháng 8
Khóa Học Online Machine Learning with Python: Học Máy Với Python | Học Rẻ Hơn Cùng EduMall, Bao gồm: các kiến thức quan trọng và cần thiết về Machine Learning, một nhánh rất “hot” của Trí tuệ nhân tạo (AI). Trang bị kiến thức và kỹ năng vận dụng các thuật toán thuộc nhóm Supervised Learning (Classification, Regression), Unsupervised Learning (Clustering, Association Analysis, Dimensionality Reduction) thông qua việc sử dụng các bộ thư viện, công cụ mạnh mẽ, mã nguồn mở như Python, Jupyter Notebooks, Numpy, Pandas, Matplotlib, Seaborn, sklearn…
Machine Learning with Python
- Khóa học cung cấp cho học viên các kiến thức quan trọng và cần thiết về Machine Learning, một nhánh rất “hot” của Trí tuệ nhân tạo (AI).
- Trang bị kiến thức và kỹ năng vận dụng các thuật toán thuộc nhóm Supervised Learning (Classification, Regression), Unsupervised Learning (Clustering, Association Analysis, Dimensionality Reduction) thông qua việc sử dụng các bộ thư viện, công cụ mạnh mẽ, mã nguồn mở như Python, Jupyter Notebooks, Numpy, Pandas, Matplotlib, Seaborn, sklearn…
- Thực hiện các project cụ thể trong bối cảnh giải quyết các vấn đề khoa học dữ liệu hấp dẫn
- Xây dựng nền tảng vững chắc về Machine Learning với Python, tạo tiền đề cho việc tìm hiểu kiến thức về Deep Learning.
- Là khóa học thứ sáu trong chương trình “Data Science and Machine Learning Certificate”
SẼ RẤT HỮU ÍCH NẾU BẠN LÀ:
- HV đã tham gia khóa Data Pre-processing and Analysis hoặc có kiến thức tương đương
- Sinh viên các trường Đại học, Cao đẳng
- HV có định hướng sẽ làm việc trong lĩnh vực Machine Learning hoặc Data Science
BẠN SẼ NHẬN ĐƯỢC GÌ QUA KHÓA HỌC?
Sau khi hoàn thành khóa học, học viên sẽ đạt được các kỹ năng:
- Áp dụng và triển khai các thuật toán trong nhóm Supervised Learning như Logistic Regression, Linear Regression, Naïve Bayes, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Support Vector Machine (SVM), Boosting và AdaBoost với Python
- Áp dụng và triển khai các thuật toán trong nhóm Unsupervised Learning như K-Means clustering, Hierarchical Clustering, Apriori, Equivalence Class Clustering and bottom up Lattice Traversal (ECLAT), Expectation–maximization (EM), Gaussian Mixture Models (GMM), Dimensionality Reduction với Principal Component Analysis (PCA) với Python
- Time Series Analysis với ARIMA
- Triển khai project theo Data Science process
- Vận dụng các thuật toán Machine Learning trong việc giải quyết các vấn đề thực tế, cụ thể
- Xây dựng nền tảng vững chắc về Machine Learning với Python, tạo tiền đề cho việc tìm hiểu kiến thức về Deep Learning.
HÌNH THỨC HỌC
- Khóa học là video + Kèm tài liệu (nếu có)
- Học trọn đời, mọi lúc, mọi nơi.
KHOẢN ĐẦU TƯ DÀNH CHO KHÓA HỌC
- Thời lượng: 40 giờ - 53 tiết (5 tuần), học trực tiếp trên máy
- Học phí: 5.800.000đ (Nhận ưu đãi phía trên)
BẠN SẼ HỌC NHỮNG GÌ?
Tổng quan Machine Learning
- Giới thiệu
- Phân loại
- Supervised Learning
- Classification
- Regression Analysis
- Unsupervised Learning
- Clustering
- Association Analysis
- Dimensionality Reduction
- Thuật ngữ
- Scikit-learn: Machine Learning trong Python
- Thách thức của Machine Learning: không đủ số lượng dữ liệu, dữ liệu đào tạo không đại diện, dữ liệu có chất lượng kém, thuộc tính không liên quan, Overfitting, Underfitting, cân bằng giữa Bias-Variance…
Logistic Regression
- Binary Classifier
- Thuật toán: Logistic Regression, phương trình toán học (Sigmoid)
- Xây dựng Logistic Regression với sklearn.linear_model.LogisticRegression
Linear Regression
- Thuật toán Least Squares
- Phân loại: Simple Linenear Regression, Multiple Linenear Regression
- Xây dựng Linear Regression với sklearn. linear_model.LinearRegression
Naïve Bayes
- Phân loại Naïve Bayes: GaussianNB, BernoulliNB và MultinomialNB
- Thuật toán: Định lý Bayes
- Xây dựng Naïve Bayes với sklearn.naive_bayes
K-Nearest Neighbors (KNN)
- Thuật toán KNN
- Xây dựng KNN với sklearn.neighbors.KNeighborsClassifier, sklearn.neighbors.KNeighborsRegressor
Decision Tree
- Thuật toán: Decision Tree
- Xây dựng Decision Tree với sklearn.tree.DecisionTreeClassifier, sklearn.tree.DecisionRegressor
Random Forest
- Thuật toán: Random Forest
- Xây dựng Random Forest với sklearn.ensemble. RandomForestClassifier
Support Vector Machine (SVM)
- Kenel trick
- Thuật toán: Linear SVM, Hard-margin, Soft-margin, Nonelinear SVM, SVM Kenel, SVM Regression
- Xây dựng SVM với sklearn.svm.SVM
Boosting, AdaBoost
- Boosting: Giới thiệu, Boosting Algorithms, phân loại
- AdaBoost (Adaptive Boosting)
- Thuật toán: AdaBoost
- Xây dựng AdaBoost với sklearn.ensemble.AdaBoostClassifier
Một số kỹ thuật bổ sung
- Xác thực chéo (Cross Validation)
- Điều chỉnh tham số (Tunning Parameter)
- Grid Search (GridSearchCV)
- Random Search
Data Science Process (Quy trình Data Science)
- Các bước trong quy trình Data Science
- Triển khai project Data Science theo các bước trong quy trình
K-Means
- Thuật toán K-Means Algorithm
- Elbow Method
- Xây dựng K-Means với sklearn.cluster.KMeans
Hierarchical clustering
- Phân loại: Divisive (top down), Agglomerative (bottom up)
- Agglomerative Clustering Algorithm
- Dendrogram
- Xây dựng Hierarchical clustering với sklearn.cluster. AgglomerativeClustering
Apriori
- Association Rule Mining
- Apriori
- Thuật toán: Apriori (Support, Confidence, Lift)
- Xây dựng Apriori với mlxtend.frequent_patterns.apriori
ECLAT (Equivalence Class Clustering and bottom up Lattice Traversal)
- Thuật toán: ECLAT
- Xây dựng ECLAT
Gaussian Mixture Model (GMM) và Expectation–maximization (EM)
- Gaussian Distribution
- GMM
- EM
- Xây dựng GMM với sklearn.mixture.GaussianMixture
Dimensionality Reduction, Principal Component Analysis (PCA)
- Dimensionality Reduction: Curse of Dimensionality, phân loại
- PCA: giới thiệu, mục tiêu
- Thuật toán: PCA, Singular Value Decomposition (SVD)
- Xây dựng PCA với sklearn.decomposition.PCA
Time Series
- Dự đoán với ARIMA
- Thuật toán, variation, decomposition
- Xây dựng mô hình với auto_arima